

Secure Coding Guideline en
BASE24

Index

Credits .. 5

Bad Memory .. 6

Bad Index Recommendations .. 6

Bad Token Recommendations .. 7

Bad Variables Recommendations .. 7

Closing File Recommendations .. 9

LCONF Read Recommendations .. 9

Keyposition Recommendations .. 9

Read, Write, Open Recommendations ... 9

PCI Violation ... 10

Recommendations ... 10

Abends .. 11

Recommendations by Token ... 11

Recommendations by memory corruption ... 11

Recommendations by file upload ... 11

POS and ATM Authorizer .. 12

Initialize tables and control data in memory .. 14

Validate the transaction .. 14

Determine authorization scheme .. 14

Route the transaction .. 14

Authorize the transaction based on account, institution card or track data ... 14

Submit the transaction in the journal (TLF o PTLF) .. 15

Device Handlers ... 16

Initialize tables and control data in memory .. 18

Update terminal totals ... 18

Decrypt the PIN ... 18

Control transaction time ... 18

Perform the terminal outage .. 18

Route the transaction to the corresponding process ... 19

Generate reversals ... 19

Send the configuration to the terminal .. 19

Host and Interchange Interface .. 20

Initialize tables and control data in memory .. 22

Check availability of the host or interchange ... 22

Control transaction times (timers) ... 22

Generate and receive reversals ... 22

Perform the Store and Forward (SAF) process ... 22

Generate and accumulate statistics .. 22

Perform routing alternatives .. 22

Submit transactions in a journal file (ILF) ... 23

From Host Maintenance ... 24

Initialize tables and control data in memory .. 26

Perform the functions of I/O record operations .. 26

Submit the transactions in a journal file (ULF) .. 26

Best practices for memory management .. 27

Direct addressing ... 27

Indirect addressing .. 27

Extended indirect addressing .. 28

Best practices for file management ... 29

Who are we? ... 30

Metabase Q .. 30

Ocelot .. 30

Introduction

Today’s payment systems are facing an ever-changing reality. New forms of payment, new channels for

making purchases and new validations of the cardholder when making transactions, are forcing

authorizing systems (POS, ATM, e-commerce, e-wallet, etc.) to be stricter with the validations and rules

that must be carried out when processing a transaction, as well as having perfectly defined parameters

that allow or prohibit a transaction to be authorized.

During this process, unexpected results can lead to catastrophic consequences for financial institutions.

A simple confusion between the rules that apply to the validation of a magnetic stripe card against a

contactless card, or a confusion in the authorizing party (switch or bank), can be enough to generate

unexpected authorizations that cause the loss of millions of dollars for banks or banking switches.

A review of the best practices of secure coding requires a review of logical errors with a meticulous

inspection through each step of the code during the validation and routing of a transaction. This requires

a team with experience in this type of processes, knowledge of both the TAL language and payment

systems (BASE24, Connex), and, of course, experience in identifying vulnerabilities in environments that

allow proactive identification of attacks, as well as short- and long-term correction of security holes.

This guide is intended to set a precedent and lay the groundwork for establishing better programming

practices in writing legacy code, specifically in TAL language, and especially that which runs on Electronic

Funds Transfer (EFT) systems such as BASE24 and Connex. The secure coding errors presented in this

guide are the result of a thorough analysis performed on BASE24 system, which has been modified by

third party vendors other than the software owner (ACI Worldwide). On many occasions the system is

modified by different vendors over the years without following any specific standard, guided only by

personal experience, practicality or speed, and sometimes without acknowledging the rules of the TAL

language or of transactionality established by the BASE24 system itself.

The errors shown in this guide are classified by categories depending on the type of impact they may

have and their severity. The recommendations to follow in order to avoid this type of errors, as well as

diagrams to better understanding the modular scheme used by BASE24 and the modules in which the

vulnerability may occur are included. A diagram is also presented to provide the user with a better

understanding of the memory management within the code written in TAL.

Credits
Metabase Q team that participated in the creation of this guide, in alphabetical order:

Alejandro Gómez Bucio

Dana Paola Valle Arroyo

José Antonio Alcalá López

Bad Memory

Errors that can cause memory corruption, leading to rejections, abends or malfunctioning of processes.

Bad Memory Bugs Risk and Impact

1.0 1.1 Bad Index Errors where not all the occurrences of a table are considered, causing
some elements to be discarded or invading the limits of others. In the first
case, if there is an omission of any occurrence, the transaction in process
can be affected, resulting in a rejection and affecting availability.
In the case of readings that exceed the number of occurrences loaded in
the table, the problem is that if during the reading the data being sought
is not found, the reading will continue until an “out of bounds” error
occurs. In other words, information that is available at the next memory
address may be brought in, which may cause data corruption of other
variables, causing a rejection or abend of the process and affecting its
availability.

1.2 Bad Token Result validation errors in the operations performed with the tokens may
cause rejections, memory corruption or process crashes, affecting the
availability of the service and the integrity of the information.

1.3 Bad

Variables

Errors related to mishandling of variables: data corruption or validating
the errors returned by the routines and still continuing with the flow of the
transaction, which may cause rejections due to invalid data and affect the
availability of the service.

Bad Index Recommendations

• In the case of readings that exceed the number of occurrences loaded in the table, the problem is

that if during the reading the data being sought is not found, the reading will continue until an “out

of bounds” error occurs, causing an abend in the RTAU. The LCONF parameters indicated in the

analysis should also be reviewed to validate how much real data may be omitted from the

program logic.

• Another good practice is to use an index field within the table that will be incrementing at the time

of loading into the memory. This will help us have an overview of how many occurrences we have

loaded in memory, regardless of whether the table has been defined larger for future use or in

anticipation of the increase of information.

Bad Token Recommendations

• Given the existing handling of tokens implemented by ACI, it is recommended to adhere to these

standards every time tokens are manipulated, validating the type of error and acting accordingly;

avoiding mishandling of memory pointers, log messages in case of failure and finally, making sure

that the information sent to the interfaces is correct in order to avoid rejections that are difficult

to diagnose.

Bad Variables Recommendations

• The correct way and the best practice to make variable movements to avoid data inconsistencies,

loss of important information for the transaction, or buffer overflow is to always use the TAL $len

utility, which takes the exact length of the target field and moves at most to the target field. On

the other hand, it is important to initialize (clean) before and after the buffers in memory.

Bad File

Errors in file operations that can lead to transaction malfunctions, file corruption and process crashes.

Bad File Bugs Risk & Impact

1.0 1.1 Closing file Errors related to closing files after manipulation or after a failure occurs,
causing unused copies to remain open.
Within BASE24 there is a table in charge of adding or deleting the files
used by the modules. The number of files that this file table can handle is
determined by the Processing File Segment (PFS). These files are
recognized by a file number (number by which a file is identified within
the tandem processes). If a file is not explicitly closed, it will continue to
use a previously designated space within the table, eventually causing
memory exhaustion. As there are multiple copies of the same file that
was not closed, it will reach a point where the table fills up and the process
crashes. This can lead to a denial of service.

1.2 LCONF read Poor reading of the parameters or assignments in the LCONF file can
cause incomplete or erroneous information to be brought in, affecting
transactionality, causing rejections or strange behavior during the
transaction process.
The problem with this type of reading, which has become a standard in
RPQ/CSMs performed by external providers within the code, is that it
does not follow the best coding practices in TAL nor those established
by ACI for handling this file.
The risk lies in the fact that when the same parameters are added up to
the position being read and then change value, it will not be known with
certainty which parameter was actually read, which can lead to data
inconsistencies or even denial of service due to rejections. Since the
parameters are only loaded when starting the process or executing a
Warmboot, the information brought incorrectly will be present all the time.

1.3 Keypostion It doesn’t validate if the pointer was positioned correctly for reading in a
record, which could cause abends in the programs, affecting the
availability of the service.
If the keyposition is performed without validating if there was an error in
the routine or if the error is different from EOF (End of File), it would mean
that something happened that needs to be taken into consideration with
the file. Therefore, there would be a problem at the time of performing the
read that is not being validated.
The severity and the considerations to be taken will also depend on the
importance of the information contained in the file.
For more information go to the section General information on file
management related to the bad file family.

1.4 Read, Write,

Open

The result of these operations is not validated in files, assuming that
everything happens as expected, which can lead to abends, corruption or
blocking of records, affecting the availability of the service.

Closing File Recommendations

• The recommendation is to close each file previously opened, or, depending on the case, to add a

Warmboot routine for the file. This way, every time a Warmboot is executed the file in the file table

will be restarted as well.

LCONF Read Recommendations

• It is recommended to adjust the reading of the parameters and to be consistent with the standard

managed by ACI.

Keyposition Recommendations

• When doing a Keyposition it is recommended to validate if there was any error. Depending on the

error number, if something different from EOF is detected, then it is recommended to make a file

info to know the details of the error. In any other case, to put a logic to handle it and notify the

failure in the EMS log.

Read, Write, Open Recommendations

• It is recommended that whenever a call is made to the open routine, the result of the variable

where the error of the operation is returned should be evaluated.

• It is recommended that whenever a call is made to the write/writex routine, it should be evaluated

whether the record has been modified or written correctly.

PCI Violation
Written code lacking the best security management practices, which could impact the confidentiality of

cardholder data that is being processed, which could be stored on disk without being masked or

encrypted (based on the PCI DSS 4.0 standard).

PCI Violation Bugs Risk & Impact

1.0 1.1 PCI

Violation

Security

Control 3.2

By sending the number in clear, sensitive data or other transaction
information such as the sequence number, you are violating PCI
regulations. This is sensitive data that if intercepted, could be misused for
fraudulent purposes.

In addition to the fact that the institution that has the BASE24 system
could incur some type of sanction for this type of failure, the main issue
is that the confidentiality of the client is at risk.

Recommendations

• The recommendation is to mask the card number or any other cardholders' sensitive information
before saving it in a log or file on disk

Abends
Unexpected or uncontrolled interruptions in BASE24 processes (known as "abending") which affect

availability, loss of transactions and business continuity.

Abends Bugs Risk & Impact

1.0 1.1 By Token The process is stopped when an error occurs in some operation with
the tokens inside the message. It is usually related to serious
memory problems. The problem is that BASE24 processes should
"abending" only if it is absolutely necessary, in order to avoid
affecting the availability of the service.

1.2 By memory

corruption

Use of pointers that are not correctly initialized, that point to invalid
memory addresses or that point to information different from what
they are supposed to point to. This is due to the fact that the result
of routines that perform operations with them is not validated and
it is assumed that the operation was satisfactory, continuing with
the transaction process that can cause breaks which are difficult to
correct and thus affecting the availability of services and even the
continuity of the business.

1.3 By file upload

The process is stopped when a file that is not essential to the
operation of the process cannot be loaded correctly into the
memory.

Recommendations by Token

• BASE24 programs should “abend” in the minority of possible scenarios, in order to avoid affecting

the service and/or causing transaction queuing. It is recommended to rely on the tools already

available in the program.

Recommendations by memory corruption

• When reading tokens, it is recommended to validate if there was no fatal error. Then, it is possible
to identify if there is a problem of memory corruption or bad formatting of the message. This will
prevent the error from snowballing into a major problem. From rejections to the process being
stopped due to memory corruption.

Recommendations by file upload

• It is recommended to avoid the abend so that the program does not close or stop running.

Now that we have described the different families of bugs that we validated during the review; it is very
important to locate their impact within the different transactional flows, as shown in the following
sections.

POS and ATM Authorizer
During any phase of the authorization process, several of the failures described in the following diagram

may occur. From the initialization of the authorizing process, to the response of a transaction to the

device handler. Within the authorizers is where the result of a failure can be more critical and where more

attention to the code implemented by third parties is required.

Below there is a graphic that provides a general description of the RTAU and AUTH process and a brief

context of the type of impact that may occur depending on the stage.

Initialize tables and control data in memory

• Incorrect data may be loaded or initialized in tables.

• May cause incorrect transaction processing based on incorrect data.

Validate the transaction

• An initial transaction rejection will occur, probably without knowledge of the reason for the

rejection or failure.

• The authorizing process may crash as soon as files are initialized, or data is loaded into memory.

Determine authorization scheme

• The method by which the transaction is to be processed can be affected, which may result in the

transaction being lost or not knowing to whom it should be routed, or even in unwarranted

authorizations.

• Crashes may occur in the authorization process.

Route the transaction

• In the case of Level 1 and 2 authorization, incorrection information may fail or be sent to the host.

It may even cause the rejection of the transaction or the authorization process to crash without

the host knowing what happened.

Authorize the transaction based on account, institution card or track data

• In the case of Level 2 and 3 authorization, cardholder information can be compromised when

handling sensitive data that is exposed in the EMS when the corresponding validations are

performed. Can provoke unwarranted authorizations.

Submit the transaction in the journal (TLF o PTLF)

• Incorrect token information that should be submitted in the journal may be submitted.

• Information that is not consistent with the final result of the transaction may be submitted.

• Journals may be corrupted or blocked.

• Compensation may be affected.

Device Handlers

Device Handlers are the primary interface between the device (POS or ATM) and BASE24. Their main

function is to convert the message formats between the device and BASE24. Within these processes,

failures such as those described in the following diagram may occur during any phase of its functionality.

From the moment the device receives the message, until the reply is sent back. It must be considered

that one of the points of high criticality is that the terminal configuration files (ATM -> ATD or POS -> PTD)

can be corrupted, causing serious problems in the business operation.

The possible consequences of failure happening in these processes are discussed in more detail below.

Initialize tables and control data in memory

• Incorrect data may be loaded or initialized in the tables.

• May cause incorrect transaction processing based on incorrect data.

Update terminal totals

• The device's detailed counters may be updated with incorrect values affecting the accounting

and possible limitations established in the services (maximum or minimum limits).

Decrypt the PIN

• Incorrect calculations of encrypted data may result in transactions being rejected due to

incorrect PINs, causing poor customer service.

Control transaction time

• If these values are lost due to some kind of error, the control of the reverses may be lost,

affecting the client and giving a bad image.

Perform the terminal outage

• If the outage fails or is performed incorrectly, it causes problems in transactions on the

accounting date, resulting in rejections and poor customer service.

Control the device status
• By not having the status of each element of the devices (hardware and software elements)

rightly controlled, it offers services that do not end correctly because the element does not have

the correct status.

Route the transaction to the corresponding process

• Can cause transactions to be sent to incorrect or non-existent processes, resulting in poor

service on the device and inconsistent transactions.

Generate reversals

• Due to the control with the device and its elements, if not operated correctly, it impacts a certain

type of transactions that directly affect the client’s account.

• Customer dissatisfaction.

Send the configuration to the terminal

• If there is not a correct control exchange with the device, it may be operating incorrectly and

processing transactions erroneously.

Host and Interchange Interface

Host interface (ANSI or ISO) is responsible for controlling the traffic of messages to and from the host,

as well as converting message formats (internal and external) between hosts and BASE24.

Interchange interface is responsible for controlling the traffic of messages to and from the interchange,

as well as converting message formats (internal and external) between interchanges and BASE24.

Within these processes, failures such as those described in the following diagram may occur during any

phase of its functionality. From the moment BASE24 receives the message, until the reply is sent back.

In this case, the most critical affectation produced by a vulnerability in the process is that it can cause

incorrect answers that translate into unexpected authorizations or rejection.

The possible consequences of failure happening in these processes are discussed in more detail below.

Initialize tables and control data in memory

• Incorrect data may be loaded or initialized in the tables.

• May cause incorrect transaction processing based on incorrect data.

Check availability of the host or interchange

• Not having control may cause the loss of transactions or give incorrect answers to the service

instead of taking possible schemes altern to authorization.

Control transaction times (timers)

• It may cause unrequired reversals by losing control of limited transaction times or responses as

a poor service.

Generate and receive reversals

• Due to control with the host, if not operated correctly, it impacts certain types of transactions

that directly affect the client’s account.

• Customer dissatisfaction.

Perform the Store and Forward (SAF) process

• This is necessary in order to have balance with the host. Failure of this control will result in data

loss, seeking to achieve information balance with the host.

Generate and accumulate statistics

• The behavioral information with the host that allows monitoring that everything is efficiently

processed is affected.

Perform routing alternatives

• Incorrect processing of possible transaction solution alternatives may be applied, resulting in

poor service.

Submit transactions in a journal file (ILF)

• If there is not a correct submission in the journal, it directly impacts the compensation with the

host.

From Host Maintenance
From Host Maintenance (FHM) is responsible for enabling users to perform online updates to BASE24

authorization files based on host files or tables.

The update operations that are performed with the BASE24 database files are: query, add, delete and

modify records. These file operations are performed through ISO messaging with the host and with

support of the host interface module. The main files in the BASE24 database that operate with this

scheme are authorization files: CAF (Cardholder file), PBF (positive Balance File) and NEG (Negative File).

Within these processes, failures such as those described above may also occur during any phase of its

functionality. From the moment the message is received with the request for maintenance of the

database in BASE24, until it is confirmed with the reply. In this case, the most critical affectation caused

by a vulnerability in the process is that inconsistencies can be generated in the BASE24 database when

performing incorrect update operations

The consequences of a failure in these processes are detailed below.

Initialize tables and control data in memory

• Incorrect data may be loaded or initialized in tables.

• May cause incorrect processing of database updates based on incorrect data and thus impacting

the authorization process of financial transactions.

Perform the functions of I/O record operations

• Incorrect query updates, additions, deletions and updates may be performed, causing corruption

of the database and resulting in loss of integrity.

Submit the transactions in a journal file (ULF)

• An incorrect record in the journals directly impacts the integrity and change control in the

database.

Best practices for memory management

Direct addressing

Although direct addressing is limited to the amount of memory it can reference, it is more efficient and

safer than indirect addressing. Therefore, direct addressing of memory should be used whenever

possible.

For example, suppose a routine expects the use of a reference parameter in several calculations within

the routine before returning the result to the caller. A good practice would be to move the parameter that

is indirectly addressed to a variable in a local memory and then use that copy to perform the calculations.

This avoids performing constant operations with memory, reducing the risk of corruption (bad variable

or abend due to memory corruption). This allows to return the final result, already validated, to the original

parameter. Although some overhead may occur in the process of copying from a parameter to a local

variable and vice versa, the management is safer because the references used by this variable use direct

addressing.

Indirect addressing

Considers arrays, structures and pointers. The advantage of using indirect addressing in the case of

arrays and structures, is that the compiler generates a pointer, reserves the necessary space and

initializes the pointer at the beginning of the structure or array. This eliminates the need to manipulate

large amounts of data within the local memory; however, the manipulation of indirect array or structure

information must be handled with care, since in case of error or information corruption, it will go out of

the scope of the routine and may affect other parts of the program and cause availability errors (abend

due to memory corruption). To use declared pointers, it is necessary to initialize and manage the space

that will be used by the data to which the pointer will be pointing.

Extended indirect addressing

This type of addressing is used when the program requires additional information storage beyond what

is already available in the user data segment. In the case of memory management for this type, the

complier takes care of automatically allocating and evicting the necessary size in the extended segment.

Therefore, the security and memory management considerations for this type of addressing are the same

as those for indirect addressing. Also, the operations performed in the extended segment are not as fast

as those used in the user segment. This type of addressing should be used only when absolutely

necessary.

Best practices for file management

The following information is intended to give a general context on the use of files by the system and

programs, as well as to provide considerations regarding the memory usage and possible consequences

resulting from a bad file being found within a program.

The maximum number of files that can be opened at any given time depends on the space available for

the control blocks:

• Access Control Blocks (ACBs)

• File Control Blocks (FCBs)

• Open Control Blocks (OCBs)

The space available for control blocks is mainly determined by the physical memory of the system. The

maximum space for ACBs is determined by the size of the Processing File Segment (PFS). The available

size of the PFS is 32 MB in H-, J- and L- series.

Taking into account all of the above, we must analyze the possible effects that bug bad file can produce

within the code. For example, if multiple opens are found within the same file, a deadlock may be

produced. This means that the file could be blocked using the file number associated to the next open.

Even if there are three or more opens, and if a write or update operation is executed in the file, it could

associate the operation with any of the other opens, which could block any of the files, preventing access

to the rest of the files or other file numbers and affecting the availability of the process. Hence the

importance of always validating the status of operations that are executed within the files.

Another aspect to consider is that multiple opens in one or different files without a close can affect other

external processes that make requests to these processes, as in the case of replication tools or

“tokenization” of sensitive data in journals, preventing it from performing its task or causing time-outs or

crashes of the processes.

Who are we?

Metabase Q

Metabase Q is a cybersecurity managed services company focused on securing Latin American

organizations from cyberattacks. We offer custom-designed cybersecurity solutions and services

designed to protect companies of various industries and sizes. Our end-to-end capabilities span CISO-

as-a-Service consulting, technological innovation and integration, and offensive security services.

Ocelot

Ocelot, by Metabase Q, is the leading Offensive Security team in Latin America. We've centralized the

world's top talent in advanced persistent threat simulations, PoS and NFC payment systems, BASE24,

ATMs, IoT, and ICS to ensure we can serve as an ally to you in your most complicated problems. Ocelot

threat intelligence, research, and offensive skills power Metabase Q's cybersecurity managed solutions.

Join us, join the revolution
contact@metabaseq.com
+52 55 2211 0920

